Is the OJIP Test a Reliable Indicator of Winter Hardiness and Freezing Tolerance of Common Wheat and Triticale under Variable Winter Environments?
نویسندگان
چکیده
OJIP analysis, which explores changes in photosystem II (PSII) photochemical performance, has been used as a measure of plant susceptibility to stress. However, in the case of freezing tolerance and winter hardiness, which are highly environmentally variable, the use of this method can give ambiguous results depending on the species as well as the sampling year and time. To clarify this issue, we performed chlorophyll fluorescence measurements over three subsequent winters (2010/11, 2011/12 and 2012/13) on 220 accessions of common winter wheat and 139 accessions of winter triticale. After freezing, leaves were collected from cold-acclimated plants in the laboratory and field-grown plants. Observations of field survival in seven locations across Poland and measurements of freezing tolerance of the studied plants were also recorded. Our results confirm that the OJIP test is a reliable indicator of winter hardiness and freezing tolerance of common wheat and triticale under unstable winter environments. Regardless of species, the testing conditions giving the most reliable results were identical, and the reliability of the test could be easily checked by analysis of some relationships between OJIP-test parameters. We also found that triticale is more winter hardy and freezing tolerant than wheat. In addition, the two species were characterized by different patterns of photosynthetic apparatus acclimation to cold.
منابع مشابه
Quantifying the threshold frost hardiness for over-wintering survival of wheat in Iran, using simulation
The value of frost tolerance in wheat is increased with decreasing the temperature in late autumn and/or early winter (phase I, acclimation), then shows plateau state for a period with the coldest temperature (II), finally appears to decrease with warming the temperature (III, de-acclimation). This study was aimed to determine the threshold frost hardiness in wheat for avoiding ...
متن کاملGenetic Architecture of Winter Hardiness and Frost Tolerance in Triticale
Abiotic stress experienced by autumn-sown crops during winter is of great economic importance as it can have a severe negative impact on yield. In this study, we investigated the genetic architecture of winter hardiness and frost tolerance in triticale. To this end, we used a large mapping population of 647 DH lines phenotyped for both traits in combination with genome-wide marker data. Employi...
متن کاملCold Hardiness in Near Isogenic Lines of Bread Wheat (Triticum Aestivum L. em. Thell.)
Low temperature (LT) is one of the most abiotic stresses causing loss of yield in wheat (T. aestivum). Four major genes in wheat (Triticum aestivum L.) with the dominant alleles designated Vrn–A1,Vrn–B1,Vrn–D1 and Vrn4, are known to have large effects on the vernalization response, but the effects on cold hardiness are ambiguous. Poor cold tolerance has restricted winter wheat production in reg...
متن کاملQTL Mapping of Winter Hardiness Genes in Lentil
chickpea (Cicer arietinum L.) is reportedly controlled by at least five genes with tolerance dominant over Lentil (Lens culinaris Medik.) germplasm with sufficient winter susceptibility (Malhotra and Singh, 1990). hardiness to survive most winters in cold northern areas is available. However, the use of that germplasm in breeding programs is hampered One of the major problems in characterizing ...
متن کاملاستراتژی سرما سختی لاروهای بید چغندر قند Scrobipalpa ocellatella (Lepidoptera: Gelechiidae) جمع آوری شده از مزرعه
The beet moth, Scrobipalpa ocellatella is recognized as a widespread agricultural pest. Cold hardiness strategy of the beet moth larvae was investigated through monitoring seasonal changes at supercooling points and lower lethal temperatures. Furthermore, the role of microhabitat in winter survival was studied. The mean SCPs of the last instar larvae was not significantly different from Novembe...
متن کامل